Proactive Planning, Reactive Implementation

The completed master plan provides guidance that enables Airport management to strategically position the Airport for the future by maximizing operational efficiency and business effectiveness, as well as by maximizing developable property through prudent planning. Demand-based planning was used throughout the course of this study, meaning each facility requirement was tied to a specific level of demand. The development and implementation plans are based upon the forecast of aviation demand. However, if demand materializes faster or slower than anticipated, implementation of modifications and enhancements can be easily adjusted based on actual demand levels. This allows Airport management the ability to ensure capital expenditures are focused on projects that are most needed at the time, using an approach that helps the Airport be future ready.

Airport Development Plan

LEGEND
- New Airfield Pavement
- Existing Structures
- Airfield Pavement to be Removed
- Proposed Building Relocation
- No-Taxi Island
- New Apron Pavement
- Structures to be Removed
- Frequent Parking
- Employee Parking
- Rental Car Parking
- Short Term Parking
- Long Term Parking
- New Vehicle Assembly and Parking

Inventory of Airport Facilities
Forecast of Aviation Demand
Facility Requirements
Alternatives for Facility Development
Implementation Plan

CPR Committee Meetings
CPR Public Open House

This Master Plan Update consists of multiple focus points with an aim to balance economic development with historical preservation. These include:

- Customs and Border Protection Evaluation
- Comprehensive General Aviation Analysis
- Passenger Terminal Building Development Strategy
- Airport Traffic Control Tower Preliminary Siting Study
- Airfield Electrical Assessment
A primary focus for this master plan study was to examine the ability of the Airport to accommodate increasing numbers of commercial passengers and general aviation users. A comprehensive general aviation analysis was completed which identified development opportunities and included hangar layouts capable of accommodating small to very large aircraft. The targeted development areas can be seen within the Airport Development Plan. A unique aspect of the study was the integration between Airport development and preservation of the historic Casper Army Air Base. The final Development Plan includes enhancements and future development that are programmed into the updated Airport Capital Improvement Plan, as well as others that are strategic and can be implemented when demand warrants and funding is available.

The passenger terminal building was assessed in regard to size, function, and ability to meet the forecasted projections of passenger enplanements. The analysis found that through phased modifications, the existing terminal can accommodate even the highest projected demand. The analysis also confirmed that immediate improvements are needed to reduce strain on the terminal’s existing departure lounge during irregular operations and peak times. A demand-based approach was used to determine the size and scope of modifications needed to meet specific levels of demand. These modifications were programmed into the updated Capital Improvement Plan based on the FAA approved forecast of enplanements.

The design aircraft(s) is used to determine future airfield modifications and enhancements, and consists of the most demanding aircraft regularly accommodated at the Airport. The CPR design aircraft is the Boeing MD-83 and Airbus A310. Runway and taxiway systems are planned around the FAA design specifications required to accommodate these aircraft.

Terminal Planning Factors

<table>
<thead>
<tr>
<th>Terminal Modifications</th>
<th>Near Term Demand Level Modifications</th>
<th>Future Low Demand Level Modifications</th>
<th>Future High Demand Level Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated to accommodate:</td>
<td>Designed to accommodate:</td>
<td>Designed to accommodate:</td>
<td>Designed to accommodate:</td>
</tr>
<tr>
<td>• 110,770 Annual Passenger Enplanements</td>
<td>• 155,000 Annual Passenger Enplanements</td>
<td>• 258,000 Annual Passenger Enplanements</td>
<td>• 328,000 Annual Passenger Enplanements</td>
</tr>
<tr>
<td>• 120 Peak Hour Passengers</td>
<td>• 180 Peak Hour Passengers</td>
<td>• 260 Peak Hour Passengers</td>
<td>• 320 Peak Hour Passengers</td>
</tr>
<tr>
<td>• 200 Passenger Departure Lounge Static Load</td>
<td>• 260 Passenger Departure Lounge Static Load</td>
<td>• 320 Passenger Departure Lounge Static Load</td>
<td>• 420 Passenger Departure Lounge Static Load</td>
</tr>
</tbody>
</table>

Aircraft Operations Forecast

<table>
<thead>
<tr>
<th>Aircraft Operation Facility Deficient Areas</th>
<th>Runway System</th>
<th>Taxiway System</th>
<th>Aircraft Apron</th>
<th>Aircraft Services</th>
<th>Aircraft Fuel Storage</th>
<th>Deicing Facilities</th>
<th>Aircraft Tie-Downs</th>
<th>Snow Removal Equipment Storage</th>
<th>Airport Maintenance</th>
<th>Aircraft Rescue and Fire Fighting</th>
</tr>
</thead>
</table>

Commercial Passengers Forecast

<table>
<thead>
<tr>
<th>Commercial Passenger Facility Deficient Areas</th>
<th>Terminal Area</th>
<th>Aircraft Gates</th>
<th>Rental Car Facilities</th>
<th>Vehicle Access</th>
</tr>
</thead>
</table>

Forecast Drives Facility Requirements

Adequate Through Planning Period

Modifications Required During Planning Period

Modifications Required in Near Term

Aircraft Operations

- **Boeing MD-83**
 - Aircraft Approach Category: D
 - Aircraft Design Group: II
 - Taxiway Design Group: S
 - Max Takeoff Weight: 160,000 lbs

- **Airbus A310**
 - Aircraft Approach Category: C
 - Aircraft Design Group: IV
 - Taxiway Design Group: S
 - Max Takeoff Weight: 364,000 lbs